Distance

The 3 diffraction images below were recorded using different crystal-to-detector distances. Match each image with its corresponding distance: 80,250 , or 450 mm . All patterns were recorded from the same crystal using the same X-ray wavelength.

DISTANCE

short distance

+able to collect high angle (resolution) diffraction -danger of operlapping spots on detector (i.e. poor spatial resolution) practical when the unit cell is small (<100 Ang) 60 mm minimum distance
limited to low angle (resolution) diffraction no danger of overlapping spots on detector +
(i.e. good spatial resolution)
necessary when unit cell is large (>100 Ang)
350 mm maximum distance

Time

The 3 diffraction images below were recorded using exposure times. Match each image with its corresponding length of exposure: $12 \mathrm{~s}, 60 \mathrm{~s}$, or 300 s . All patterns were recorded from the same crystal using the same X-ray wavelength.

TIME

for Poisson distribution

$$
\sigma_{\mathrm{I}}=\sqrt{\overline{\mathrm{I}}}
$$

$$
\text { fractional uncertainty }=\frac{\sigma_{1}}{\overline{\mathrm{I}}}=\frac{\sqrt{\overline{\mathrm{I}}}}{\overline{\mathrm{I}}}=\frac{1}{\sqrt{\overline{\mathrm{I}}}}
$$

fractional uncertainty $=\sqrt{0.8}=1.118 \quad$ fractional uncertainty $=\sqrt{3}=0.577$
smaller σ, but larger fractional uncertainty
lager σ, but smaller fractional uncertainty

short exposure

+ quicker data set
- less accurate measurements
+ no chance of overloading detector pixels practical for big crystals or high intensity synchrotron beams. 1 sec/exposure at synchrotron

long exposure

more accurate measurements + may overload detector pixels -
necessary for small crystals
or weaker home x-ray sources $3 \mathrm{~min} / \mathrm{exp} \mathrm{m}^{2}$ on CCD home source

Oscillation Angle

The 3 diffraction images below were recorded while rotating the crystal by different amounts. Match each image with its corresponding rotation: $0.10^{\circ}, 1.00^{\circ}$, or 5.00°. All images were recorded from the same crystal at the same X-ray wavelength.

OSCILLATION ANGLE

fewer degrees

 oscillationmore degrees oscillation

+ less risk of spot overlap
- requires more exposures, time consuming + more accurate intensity measurements
0.5-1.0 degree for typical proteins
more risk of spot overlap requires fewer exposures, quicker collection +
less accurate measurements 2.0 degrees for typical DNA oligos

Total Rotation Range

The 3 reciprocal lattices below reveal different degrees of rotational symmetry. Indicate the minimum amount of crystal rotation required to capture the unique part of each diffraction pattern: $45^{\circ}, 90^{\circ}$, or 180°.

total number of DEGREES of rotation

30 degrees unique

P622 space group (higher symmetry)

45 degrees unique

P422 space group (lower symmetry)
fewer degrees of rotation

- risk lower completeness
- poor redundancy
+ quicker data collection
practical for high symmetry space groups
more degrees of rotation
completeness assured +
high redundancy +
time consuming to collect data required for low symmetry space groups

