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Conc lus ion  

Complications appear  in many-body searches when the first molecule 
or molecules are not correctly placed. In our experience, orientations seem 
to be detectable if the search model  represents more  than 1/35 of the unit 
cell content, but more  robust  agreement  factors are needed,  especially for 
TFs. Statistics are lacking with respect to requirements  for the quality of 
the search model; they would allow a correct assessment of the full capabili- 
ties of the method.  

[34]  R o t a t i o n  F u n c t i o n  C a l c u l a t i o n s  w i t h  G L R F  P r o g r a m  

B y  LIANG TONG and MICHAEL G. ROSSMANN 

In t roduc t ion  

Calculation of rotat ion functions represents the first step in a structure 
determinat ion by the molecular  replacement  method.  1-3 Rotat ion functions 
can be used to determine the orientation of a noncrystallographic axis in 
a crystal or to determine the orientation of a search model  (an identical 
structure in another  crystal form or a homologous structure) relative to 
the molecules in a crystal. In the second step of the molecular  replacement  
method,  the rotational parameters  can be used to determine the position 
of the noncrystallographic symmetry  in the crystal, 4,5 or to determine the 
position of the search model  in the crystal. 5-7 The information on the 
orientation and position of a search model  leads to an initial solution for 
the crystal structure. Finally, the orientation and position of the noncrys- 
tallographic symmetry  axes can be used to determine an initial phasing set 
as well as to improve and extend the phase information. 3 

Given two identical or homologous molecules, A and B, the rotation 
[p] that brings molecule A into the same orientation as molecule B will 
also bring the self (intramolecular) vectors within molecules A and B into 

a M. G. Rossmann and D. M. Blow, Acta Cryst. 15, 24 (1962). 
2 M. G. Rossmann, ed., "The Molecular Replacement Method." Gordon and Breach, New 

York, 1972. 
3 M. G. Rossmann, Acta Cryst. A46, 73 (1990). 
4 D. M. Blow, M. G. Rossmann, and B. A. Jeffery, J. Mol. BioL 8, 65 (1964). 
5 L. Tong, J. Appl. Cryst. 26, 748 (1993). 
6 R. A. Crowther and D. M. Blow, Acta Cryst. 23, 544 (1967). 
7 y. Harada, A. Lifchitz, J. Berthou, and P. Jolles, Acta Cryst. A37, 398 (1981). 
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overlap. Hence,  an ordinary rotation function 1 can be defined as the overlap 
of one Pat terson function ( P ( u ) )  and the rotated version of the other, 

where in real space 

~ ( [ c ] )  = f PA(U)PB([C]u) du  (1) 

XB = [C]XA + d (2) 

with d being the translation vector, and where 

[C] = [OtB][p][~A ] (3) 

[O~B] is the deorthogonalizat ion matrix, a which converts angstrom coordi- 
nates relative to a Cartesian system to fractional coordinates relative to 
the crystal unit cell, and [/3A] is the orthogonalization matrix. The rotation 
[p] is usually represented as a set of Eulerian (01, 02, 03) or polar  (¢, qJ, K) 
angles. 1 The integration volume (U)  is generally a sphere or spherical shell 
centered at the Patterson origin. The radius (R) of this sphere is chosen 
to exclude most  of the intermolecular vectors in the crystal. 

Rotat ion functions can be classified by how Eq. (1) is evaluated (e.g., 
as slow 1 or fast, 8 or as reciprocal or Patterson space 9 rotation functions); 
by whether  the two molecules reside in the same or different crystals (self- 
or cross-rotation functions); and by how the presence of noncrystallographic 
symmetry  is handled (ordinary or locked ~°,u rotation functions). 

Rotat ion functions are generally evaluated on a search grid in Eulerian 
or polar  angles covering either the region of interest or the entire (unique) 
region of the rotational space. Grid points that correspond to the correct 
rotat ion angles are generally expected to give high values for Eq. (1). 
Rota t ion  function values at other grid points provide an estimate for the 
background noise. Several computer  program packages are available for 
the calculation of rotat ion functions. These include P R O T E I N ,  lz CCP4,13 
M E R L O T ,  TM X-Plor, ~5 and A M o R e J  6 These programs support  only some 
of the rotat ion functions described previously. 

8 R. A. Crowther, in "The Molecular Replacement Method" (M. G. Rossmann, ed.), pp. 
174-178. Gordon and Breach, New York, 1972. 

9 R. Huber, Acta Cryst. 19, 353 (1965). 
10 M. G. Rossmann, G. C. Ford, H. C. Watson, and L. J. Banaszak, J. Mol. Biol. 64, 237 (1972). 
11 L. Tong and M. G. Rossmann, Acta Cryst. A46, 783 (1990). 
12 W. Steigemann, Ph.D. thesis, Technische Universit~it, Munchen, Germany (1974). 
/3 "CCP4, the Cooperative Computing Project in Crystallography." SERC Daresbury Labora- 

tory, Warrington, U.K., 1986. 
14 p. M. D. Fitzgerald, J. Appl. Cryst. 21, 273 (1988). 
15 A. T. Brtinger, "X-Plor Manual." Yale University Press, New Haven, 1992. 
16 j. Navaza, Acta Cryst. AS0, 157 (1994). 
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The program GLRF T M  supports the calculation of most of the different 
types of rotation functions. The program also supports several different 
conventions for Eulerian and polar angles as well as several different ways 
of orthogonalizing the crystal unit cell. The input commands to the program 
are keyword-based and free-formatted. A few examples of input files to 
GLRF are shown in the Appendix. 

Slow Rotation Function 

If both Patterson functions are expressed as their Fourier transforms, 
Eq. (1) becomes 1 

m ( [ C l ) = E E  2 2 FhF~Ghp (4) 
h p 

where 

Gh p = 3(sin 2rr H R  - 2rr HR  cos 2rr H R  ) 
(27r/_/R)3 (5) 

is the G function, 1 which represents the Fourier transform of a sphere of 
radius R. H is the length of the reciprocal space vector h + p[C]. The G 
function assumes the maximum value of 1 when h + p[C] = 0, but it quickly 
approaches and then oscillates around zero as h + p [C] deviates from zero 1 
(Fig. 1). 

The evaluation of Eq. (4) is generally time-consuming, hence the name 
slow rotation function. Several techniques have been developed to speed 
up the evaluation of the slow rotation function. The rotation function, being 
a fourth power function [Eq. (4)], tends to be dominated by the strong 
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FIG. 1. Plot of the G function for values of HR in the range -2.0 to 2.0. Note that the G 
function values do not exceed 0.1 when J HRI >-- 0.72. [Reprinted from Rossmann and Blow.a 
Copyright by the International Union of Crystallography.] 
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reflections. Therefore, only the strong reflections of crystal B are needed 
in the calculation, iv These reflections, which form the large terms in Eq. 
(4), are selected based on the criterion 

Ip >~ ~l X (Ip) (6) 

where A is the cutoff value and the mean intensity (Ip) is calculated for 
shells of equal reciprocal space volume. A cutoff value of 1.5 to 2.0, which 
usually selects about 10 to 20% of the observed reflections as large terms, 
is usually found to be adequate for calculations with protein crystal data. 

Given the large terms (p), the summation over the reflections (h) of 
crystal A is limited to those terms that are within an interpolation box 
centered on the reciprocal lattice point closest to - p  [C], as the value of 
the G function is negligible for the other terms) The size of this interpola- 
tion box is generally 3 × 3 x 3. When the integration volume U is very 
small as compared to the volume of the crystal unit cell, the size of the 
interpolation box should be increased. However, the computation will be 
severely slowed down, as it is proportional to the volume of the interpola- 
tion box. 

G function values are obtained by table lookup. The table can be set 
up as a function of H o r  H 2. The fastest approach, however, is to set up 
the table on a fine mesh 5'17 for all (nonintegral) values of h + p[C] in the 
interpolation box. 

For ordinary self- and cross-rotation functions, the rotation function 
values vary relatively slowly as a function of the rotation angles. If a reason- 
ably fine search grid is used relative to the resolution of the reflection data 
and the radius of the integration sphere (generally grid intervals of 3-4°), 
it is unlikely for the neighbors of a grid point to have a high rotation 
function value if the grid point itself has a low value. The slow rotation 
function calculations can therefore be accelerated by ignoring such neigh- 
boring grid points# 

Fast  Rotation Function 

For the fast rotation function, 8 the Patterson functions are expressed 
in terms of spherical polar coordinates (r, 0, ~b). The angular portion (0, 
~b) of the Patterson function is expanded in terms of the spherical harmonics 
functions. The radial portion is expanded in terms of the spherical Bessel 
functions. Rotating the Patterson function will only affect the angular por- 
tion of the expansion. Utilizing special properties of the spherical harmonics 
functions, the rotation function [Eq. (1)] becomes a Fourier transform in 

17 p. Tollin and M. G. Rossmann,  Acta Crysr 21, 872 (1966). 
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01 and 03 of Eulerian angles, whereas the coefficients of this transform are 
dependent  on Oz. The rotation function is then evaluated by the fast Fourier 
transform technique for each section of 02. An improved implementation 
of the fast rotation function has been presented TM and is available in the 
program AMoRe.  16 The fast rotation function can also be calculated in 
terms of polar angles ,  19 as is available in the program M E R L O T J  4 

The large-term approach developed for the slow rotation function can 
also be used for the fast rotation function. Test calculations have shown, 
however, that a much smaller cutoff value (A) should be used (roughly 
between 0.25 and 0.5) to obtain good fast rotation function results. More 
large-term reflections might be required for the fast than for the slow 
rotation function because of the poor  convergence properties of the spheri- 
cal Bessel expansionsJ 8 The large-term approach is better  than that used 
in several other programs, where an absolute cutoff value on the structure 
factor amplitudes is applied. This could lead to under-representation of 
the high resolution reflection data in the calculation. 

Ord inary  Self-Rotat ion Func t ion  

When the two molecules A and B exist in the same crystal, an ordinary 
self-rotation function can be used to determine the orientation and the 
angle of rotation of the noncrystallographic symmetry axis relating the two 
molecules. Polar angles are generally preferred for representing the rotation 
[p] in ordinary self-rotation functions. For  example, if the molecules are 
expected to be related by a twofold axis, K can be fixed at 180 ° and the 
rotation search can be limited to the ¢ and 0 angles. Calculations in polar 
angles are performed with the slow rotation function in the program GLRF.  

If the two molecules are related by an improper rotation, a full three- 
dimensional search may be necessary. In such cases, it is generally more 
advantageous to represent the rotation [p] as a set of Eulerian angles. This 
simplifies the definition of the unique region of the rotational space I'2°'21 
and makes it easier to take advantage of the fast rotation function. Once 
the rotation [p] is known, it can be converted into a set of polar angles. 
This conversion can be done automatically in the G L R F  program. 

The ordinary self-rotation function will always achieve its maximum 
value when the rotation [p] is the identity matrix. In the program GLRF,  
the ordinary self-rotation function is scaled such that this maximum value 

18 j. Navaza, Acta Cryst. A43, 645 (1987). 
19 N. Tanaka, Acta Cryst. A33, 191 (1977). 
2o p. Tollin, P. Main, and M. G. Rossmann, Acta Cryst. 20, 404 (1966). 
21 S. N. Rao, J.-H. Jih, and J. A. Hartsuck, Acta Cryst. A36, 878 (1980). 
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is always 1000. This brings the ordinary self-rotation function onto an 
"absolute" scale and makes it easier to compare the results from different 
calculations. The rotations corresponding to the crystallographic symmetry 
operators should all produce rotation function values of 1000. 

Ordinary Cross-Rotation Function 

If two molecules are in separate crystals, the ordinary cross-rotation 
function can be used to determine their relative orientation. In the case 
where an identical or homologous structure is used as the model to solve 
another structure, the known model can be placed in an artificial cell with 
dimensions about twice that of the largest dimension of the model to avoid 
the overlap of the self-Pattersons around neighboring unit cell origins. 
Eulerian angles are more convenient for the ordinary cross-rotation func- 
tion, as the rotation function symmetry in the Eulerian angles can be easily 
determined in all but the cubic systems. 2°'21 The angle limits that define 
the unique regions of Eulerian rotational space for noncubic Laue group 
symmetries of crystals A and B have been tabulated 2I and these limits can 
be automatically assigned in the GLRF program. The angle limits for the 
unique regions for the cubic Laue groups (m3 or rn3rn) can be specified 
based on the corresponding lower orthorhombic (mmm) or tetragonal 
(4/mmm) Laue groups. The rotation function will then contain crystallo- 
graphically related regions. 

The fast rotation function is particularly useful for the complete evalua- 
tion of the ordinary cross-rotation function due to its speed. With modern 
computers and the improvements in speed performance as mentioned pre- 
viously, the evaluation of the slow rotation function is no longer extraordi- 
narily expensive in time. The slow rotation function employs different 
approximations as compared to the fast rotation function. Therefore, in 
cases where results from the fast rotation function prove unsatisfactory, 
the slow rotation function may turn out to be more advantageous. 

The grid interval in the rotation angles for the initial searches should 
be set as coarse as possible to reduce the total number of grid points that 
need to be calculated. The interval depends on the high resolution limit 
(D) of the reflection data and the radius of the integration sphere arid is 
roughly given by 2 sin-l(D/2a), where a is the average unit cell length. A 
grid interval of 3 to 4 ° is generally sufficient for calculations with protein 
crystal data up to about 3 A resolution. The grid interval along 01 and 03 
for the fast rotation function is roughly 2.8 ° in the program GLRF. Once 
a peak is identified from the initial searches, fine searches should be per- 
formed around this peak, covering a smaller region and using a smaller 
grid interval (usually around 1 °) to determine the angles more accurately. 



600 PHASES [341 

The program GLRF can automatically perform these fine searches, with 
the slow rotation function, for the top peaks in the rotation function. 
Alternatively, Patterson correlation refinements can be used, as is available 
in the program X-Plor. is A different type of Patterson correlation refine- 
ment is possible as well (Tong, unpublished results, 1996). 

The GLRF program also supports the calculation of a "prealigned" 
cross-rotation function, a°'22 Sometimes it is known that a direction in crystal 
A is aligned with a direction in crystal B (for example, the alignment of 
the noncrystallographic twofold axis of a dimer in two different crystal 
forms). In such cases, a prerotation can be used to align the two directions 
first. Subsequent rotation function calculations are then carried out in polar 
angles, varying only the angle K. It should be cautioned that the head-to- 
head and head-to-tail alignments of the two directions will in general not 
be equivalent, and both alignments should therefore be tried. 

Locked Self-Rotation Function 

Many macromolecular crystals contain assemblies that have a simple 
point group symmetry. For example, a tetramer may have the point group 
222 or an icosahedral virus will have the point group 532. The ordinary 
self-rotation function can be used to determine the orientation of each 
noncrystallographic symmetry axis individually. However, if the symmetry 
of the point group can be assumed beforehand, the orientations of all N 
of the symmetry elements of the point group can be determined simultane- 
ously, with the locked self-rotation function, l°'u Instead of searching for 
N orientations separately, the locked self-rotation function searches for 
one general rotation [E] which will bring the noncrystallographic symmetry 
point group in a standard orientation (see below) to the orientation of the 
macromolecular assembly in the crystal. Moreover, the averaging over the 
N individual rotation function values leads to a reduction, by a factor of 
about N 1/2, in the background noise level, n The locked rotation function 
should therefore be more powerful than the ordinary rotation function. 

A standard orientation is defined for the noncrystallographic symmetry 
point group. For example, a 222 point group can be defined with its three 
twofold axes along the X, I1, and Z axes of a Cartesian coordinate system. 
If [/n](n = 1 . . . . .  N) represents the set of rotation matrices for the 
symmetry operators of the point group in the standard orientation (where 
[11] is the identity matrix), the rotation matrices [pn] of the point group 
after a rotation [E] has been applied to the standard orientation are given by 

[p,] = [EI[I,I[E] -1 (7) 

22 L. Tong, H.-K. Choi, W. Minor, and M. G. Rossmann, Acta Cryst..4,48, 430 (1992). 
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An ordinary self-rotation function value (9~n) can be calculated correspond- 
ing to each of the rotation matrices in the new orientation. The locked self- 
rotation function value (glL) is defined as the average of the individual 
values 

N 

9~L -- N 1_ 1 ~--2= 9~, (8) 

where ~1 is omitted as [01] is the identity matrix. 
Locked self-rotation function calculations are more readily performed 

in Eulerian angles except in special cases involving a noncrystallographic 
symmetry axis aligned with a direction in the crystal, where polar angles 
may be more appropriate. The unique region of the rotational space for a 
locked self-rotation function depends on the symmetry of the crystal, the 
symmetry of the point group, and the definition of the standard orientation. 
For each point group, there exists a set of rotational transformation matrices 
([Hk], k = 1 , . .  , , K) that will leave the orientations of the point group 
symmetry elements unchanged. For example, the set of transformation 
matrices for point group 23 will have the symmetry 432 (Table I). The set 
of rotation matrices that is related to a rotation [E] by the symmetry of 
the locked self-rotation function is then given by [B][Tm][Ot][E][Hk], where 
[Tm] is the rotational component of the mth crystallographic symmetry 
operator. Therefore, the unique region of the rotational space for a locked 
self-rotation function can be much smaller than that for the corresponding 
ordinary self-rotation function (Table I). 

For point groups 222, 4, 422, 3, 32, 6, 622, 23, and 432, the standard 
orientation can be defined such that the orientations of the point group 
symmetry elements are identical to those at the origin in the corresponding 

TABLE I 
SYMMETRY OF THE POINT GROUP 

TRANSFORMATION MATRICES 

Symmetry of Symmetry of 
point group transformation matrices [H] a 

222 432 
422 822 b 

32 622 
622 622 
23 432 

432 432 

a See text for definition. 
b The twofold axes are separated by 22.5 °. 
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space group (for example, space group P23 for the point group 23). The 
standard orientation for other point groups can be defined such that the 
highest-order rotation symmetry axis is along the Cartesian Z axis in order 
to simplify the definition of the unique region of the rotational space. 11 The 
program GLRF provides several different ways for defining the standard 
orientation of the noncrystallographic symmetry point group. The program 
requires only the minimum number of the point group symmetry elements, 
being able to generate from them, by pairwise multiplication, the entire 
point group. For example, one way of defining the standard orientation of 
point group 532 would be to provide the orientation of a fivefold and a 
nonorthogonal twofold axis. 

The locked self-rotation function can be calculated with the slow rota- 
tion function in the program GLRF. If the rotation function value for any 
of the noncrystallographic symmetry elements is below a predefined cutoff 
at a search grid point, the program will skip to the next grid point. This 
will prevent the program from spending time on rotation angles that are 
unlikely to produce a large value for the locked self-rotation function. 
Alternatively, the fast rotation function can be used to calculate an ordinary 
self-rotation function covering the entire Eulerian space. The program 
GLRF can then evaluate the locked self-rotation function by linear interpo- 
lation among the computed values in the ordinary self-rotation function, 
resulting in a significant speedup in the calculation as compared to the 
evaluation by the slow rotation function. The discussion here also applies 
to the calculation of the locked cross-rotation functions (see as follows). 

The locked self-rotation function has proven to be useful for virus 
crystallography. 23-25 It simplifies the task of determining the orientation of 
the icosahedral particle, and it reduces the calculation time and the amount 
of manual intervention. Because of the greater power of the locked self- 
rotation function compared to the ordinary self-rotation function, a large- 
term cutoff value (A) of 3 to 5, selecting only 1 to 5% of the observed 
reflection data, is generally sufficient for the locked self-rotation function 
of icosahedral virus crystal data. A higher large-term cutoff value (in the 
range of 2 to 3) than is possible with an ordinary rotation function should 
also be sufficient for locked self-rotation function calculations when the 
noncrystallographic point group symmetry is lower. If the fast rotation 
function is used in the calculation, however, the large-term cutoff value 

23 M. A. Oliveira, R. Zhao, W.-M. Lee, M. J. Kremer, I. Minor, R. R. Rueckert, G. D. Diana, 
D. C. Pevear, F. J. Dutko, M. A. McKinlay, and M. G. Rossmann, Structure 1, 51 (1993). 

24 M. Agbandje, R. McKenna, M. G. Rossmann, M. L. Strassheim, and C. R. Parrish, Proteins 
16, 155 (1993). 

25 A. Zlotnick, B. R. McKinney, S. Munshi, J. Bibler, M. G. Rossmann, and J. E. Johnson, 
Acta Cryst. D49, 580 (1993). 
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should still be 0.25 to 0.5. The locked self-rotation function was used to 
confirm the orientation of the noncrystallographic symmetry elements in 
crystals of bacterioferritin, where the point group symmetry of the assembly 
is 432. 26 

The locked self-rotation function should also be applicable to cases 
where the symmetry of the macromolecular assembly does not obey that 
of a point group (improper rotational symmetry). Such applications will 
be limited, however, as it is then difficult to define the standard orientation. 
Moreover, as the noncrystallographic symmetry is no longer a closed point 
group, the unique region of the rotational space will be much larger. 

Locked Cross-Rotation Function 

The presence of noncrystallographic symmetry can also be utilized in 
cross-rotation function calculations, when only the monomer of the macro- 
molecular assembly is used as the search model. For a rotation [Y] that 
brings the monomeric search model into the same orientation as one of 
the molecules of the assembly, there will be a set of other rotations 
[pn](n = 1 , . . .  , N) that will bring the model into the same orientations 
as the other molecules of the assembly. Assuming that [J ,]  represents the 
set of noncrystallographic symmetry rotation matrices for the assembly in 
the crystal, which can be determined from either ordinary or locked self- 
rotation functions, the set of rotations is given by 

[P.] = ( 9 )  

Therefore, a locked cross-rotation function value u can be defined as the 
average of the individual ordinary cross-rotation function values, 

1 
~L = ~ E ~- 0 o) 

The locked cross-rotation function, like the locked self-rotation func- 
tion, is best calculated in Eulerian angles. The unique region of rotational 
space for a locked cross-rotation function as defined above depends not 
only on the symmetry of the macromolecular assembly, but also on the 
actual orientation of the assembly in the crystal, making it rather difficult 
to define the angle limits. 

The following formulation of the locked cross-rotation function is pre- 
ferred as it can simplify the definition of the unique region of rotational 
space. Assume that [In] is the set of noncrystallographic symmetry rotation 

26 F. Frolow, A. J. Kalb (Gilboa), and J. Yariv, Acta Cryst. D49, 597 (1993). 
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matrices in the standard orientation and that [E] is the rotation that brings 
the standard orientation to that of the assembly in the crystal. For a rotation 
[F] that brings the monomeric search model into the same orientation as 
one of the molecules of the assembly in the standard orientation, the set 
of rotations relating the search model to the assembly in the crystal is 
given by 

[On] = [E][In][F] (11) 

With this definition, the unique region of the rotational space for the locked 
cross-rotation function depends on the symmetry of the point group and 
the definition of the standard orientation and therefore can be determined 
more easily. As discussed for the locked self-rotation function, the standard 
orientation for simple point groups can be defined such that the rotation 
axes are oriented to be coincident with those of the corresponding space 
groups. The angle limits for the unique region can then be obtained from 
the table, 21 using P]- as the Laue group for the rotated Patterson map and 
the Laue group corresponding to the point group for the stationary Pat- 
terson map. It should be noted that the unique region is independent of 
the space group symmetry of the crystal, as the set of rotation matrices 
[J,] or the rotation [El applies only to the macromolecular assembly in one 
crystallographic asymmetric unit. Considering all the crystallographically 
related assemblies at the same time will eliminate this independence, but 
it will not reduce the total number of calculations that is necessary. A 
locked cross-rotation function may therefore require the coverage of a 
larger rotational space than the corresponding ordinary cross-rotation 
function. 

Presentation of Rotation Functions 

The program GLRF can perform a peak search to identify those angles 
that give rise to high rotation function values. It lists two sets of angles for 
each peak. The first set corresponds to the actual angles that are used in 
the rotation function calculation. The nature of the second set of angles 
can be defined by the user. For example, if a three-dimensional ordinary self- 
rotation function calculation is carried out in Eulerian angles, the second set 
of angles in the peak listing can be specified to be polar angles so that the 
orientation and the angle of rotation of the noncrystallographic symmetry 
axis can be identified. 

In addition, the program GLRF can produce contour plots of the rota- 
tion function values. Calculations in Eulerian angles are plotted in a 
Cartesian system with 01,65, and 03 along the three coordinate axes. Calcula- 
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FIG. 2. A stereographic projection of the K = 180 ° section for the self-rotation function 
of Sindbis virus capsid protein type 3 crystal data. A total of 3863 reflections between 10.0 
and 3.5 ,~ resolution were used in the calculation of Patterson map A. The large-term cutoff 
was 1.5, selecting 839 reflections in the calculation of Patterson map B. The radius of integration 
was 20 .&. [Reprinted from Tong e t  al.  22 Copyright by the International Union of Crystallog- 

raphy.] 

tions in polar angles are plotted as stereographic projections for sections 
of constant K (Fig. 2). While the peak listing provides information only for 
the heights of the peaks, the contour plots will also show the shapes of the 
peaks, which often can be more informative. For example, sharp and well- 
defined contours may suggest a high degree of similarity between the mole- 
cules, and contours with an elongated shape may indicate the presence of 
two closely positioned peaks. 
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Electron Density Correlation Functions 

The rotation function is based on the correlation of one Patterson 
function with the rotated version of another and can be calculated with 
the knowledge of the structure factor amplitudes. When phase information 
is available for the reflections, a function can be similarly defined based 
on the correlation of the electron density functions of two identical or 
h o m o l o g o u s  moleculesl'4'5'27: 

~([C], SA , SB ) = E E FhFp Ghpe-27rihSAe - 2rripsB (12) 
h p 

where [C] is the rotational relationship between the two molecules, and 
SA and s~ are the centers of the spheres within which the electron density 
functions are being compared. The function ~ calculates the correlation 
within spherical volumes and hence avoids the definition of molecular 
masks. 

Equation (12) can be used in three ways, and these applications are all 
supported by the program GLRF. First, given the rotational relationship 
[C] and a position (for example, the center) in molecule A (SA), the corre- 
sponding position in molecule B (sB) can be determined by a Fourier 
transformation with p as indices. Second, once initial estimates for [C], SA, 
and sB are available, Eq. (12) can be used to optimize these values. An initial 
estimate for [C] is usually obtained from rotation function calculations. An 
initial estimate for SA can usually be obtained by examining the electron 
density map and selecting a position that is roughly at the center of the 
molecular envelope. The initial estimate for s8 can then be obtained from 
Eq. (12) by Fourier transform. Subsequently, only values for [C] and sB 
(or SA) need to be changed in the optimization. 

If the two molecules are present in the same crystal, the projection of 
SB -- SA onto the direction of the rotation axis [C] will give the translation 
element (dll) along this axis. The average of SA and sB is the position of the 
noncrystallographic symmetry axis in the unit cell. If s is assumed to lie on 
this rotation axis, then s = [C]s  + dll. By substitution into Eq. (12), 

([C], s, dip ) = ~, ~ FhFp Ghpe-2~ipdlle 2~ri(h+p)s (13) 
h p 

Therefore, the position (s) of the noncrystallographic symmetry axis can 
be determined by a Fourier transformation with h + p as indices. The 
transform should produce a long, sausage-shaped feature that corresponds 
to the position of the noncrystallographic symmetry axis in the unit cell. 
[C] can be obtained from rotation function calculations, and dll is zero for 

z7 M. G. Rossmann, D. M. Blow, M. M. Harding, and E. Coller, Acta Cryst. 17, 338 (1964). 
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FIG. 3. Electron density correlation function [Eq. (13)] showing the position of the noncrys- 
tallographic twofold axis in Sindbis virus capsid protein type 3 crystal. Reflection data were 
selected between 10.0 and 5.0 A resolution. Solvent-flattened, MIR phases were used in the 
calculation. The large-term cutoff was 1.5 and the radius of integration was 20 A. Sections 9 
through 13 (0.1 through 0.15 in fractional units) in y are shown super imposed in the plot. 
The first contour level was drawn at 4 ~r and subsequent contours were drawn at intervals of 
m where cr is the rms deviation from the mean of the function. [Reprinted f rom Tong et  al. 22 

Copyright by the International Union  of Crystallography.] 

symmetrical aggregates with closed point groups. Equation (13) can then 
be used once initial phase information is available to locate the position 
of the noncrystallographic symmetry axis. For a noncrystallographic twofold 
axis, dll can be determined by a special Patterson correlation function, 27 
which is also supported by the GLRF program. 

Accurate values for [C] and the center (s) of the noncrystallographic 
symmetry axis are prerequisites before initiating molecular replacement 
averaging for phase improvement and phase extension. The approach pre- 
sented here avoids the tedious task of defining the molecular masks and 
represents a quick and simple way of obtaining accurate parameters for 
the noncrystallographic symmetry elements. Equations (12) and (13) have 
been used successfully in the structure determinations of a-chymotrypsin, 4 
Sindbis virus capsid protein, 21 and thiolase. 28 In these cases, the initial 

28 M. Mathieu,  J. Zeelen,  R. A. Pauptit,  R. Erdmann ,  W.-H. Kunau,  and R. K. Wierenga, 
S t r u c t u r e  2, 797 (1994). 



608 PHASES [341 

electron density map was of rather poor quality and the noncrystallographic 
twofold axis in the electron density could not be identified from visual 
inspections of the map. Calculations with Eq. (13), however, clearly showed 
the positions of the noncrystallographic two-fold axis (Fig. 3). A position 
was then identified to be roughly at the center of one of the monomers by 
examining the electron density map with the results from Eq. (13). The 
corresponding position in the other monomer was determined by the Fou- 
rier transform in Eq. (12). After the rotational and positional parameters 
were optimized with Eq. (12), the average of the two positions then gave 
the accurate location for the noncrystallographic twofold axis in the unit cell. 

Appendix: Examples of Input Files to Program GLRF 

A. Ordinary self rotation function calculation. 

! Comments can be introduced anywhere in the input by using 
! the special character !. They can also be introduced with 
! the COMMENT command. 
! 

! Only the first four letters of each command is needed. 

title Ordinary self RF calculation 
print srf.prt 
! 

! Conventions 
! 

polar xyk 
euler zxz 
orthogonalization axabz 
! 

! Crystal A 
! 

acell 38.8 79.7 60.8 90 102.2 90 
asymmetry p21 
aobs-file native.dat 
aformat (3i4, 2f8.2) 
acutoff 2 1 0 
apower 2 
nshell 8 
origin true ! Patterson origin removal 

! Crystal B 
! As a self RF is being calculated, the program will automatically 
! copy the information for crystal A into B 

cutoff 1.5 ! Large term cutoff 
! 

! Search parameters 
! 

self true 
cross false 
fast false 
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resolution i0 3 
radius 15 
rcutoff 20 
boxsize 3 3 3 
gevaluation 2 
sangle polar 
slimits 1 0 180 2 
slimits 2 0 180 2 
slimits 3 180 180 0 
peak-search 3 40 
pkfitting 5 1.5 
oangle polar xzk 
mapfile srf.map 

! Contour plot 
! 

cntfile srf.ps 
cntlevel 300 1000 50 
cntsection 1 1 
! 

stop 

! Cut-off value for removing neighbors 

! G function from fine mesh table 

! Search limits in phi 
! Search limits in psi 
! kappa is held at 180 

! automatic fine searches 

! A contour plot in stereographic 
! projection will be produced 

B. Ordinary  cross rotation function calculation. 

title Ordinary cross RF calculation 
print xrf.prt 
[ 

! Conventions 

polar xyk 
euler zyz 
orthogonalization axabz 
! 

! Crystal A 

acell 38.8 79.7 60.8 90 102.2 90 
asymmetry p21 
aobs-file native.dat 
aformat (3i4, 2f8.2) 
acutoff 2 1 0 
~power 2 
nshell 8 
origin true 

! Crystal B 

bcell 57.0 57.0 109.8 90 90 90 
bsymmetry p43212 
bobs-file fobs.dat 
bformat (3i4, 2f8.2) 
bcutoff 2 1 0 
bpower 2 
zutoff 0.25 ! Large term cutoff 

! Search parameters 

! The fast RF is calculated with the 
! ZYZ convention for Eulerian angles 

! Patterson origin removal 
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self false 
cross true 
fast true 
resolution i0 3 
radius 15 
sangle euler 
slimits 2 270 270 3 
peak-search 4 50 
pkfitting i0 1.5 
oangle euler zxz 
section 213 
mapfile xrf.map 

! Contour plot 
! 

cntfile xrf.ps 
cntlevel 500 i000 50 
! 

stop 

! The program will automatically assign 
! the angle limits 
! Automatic fine searches 

! sectioning of the map file and the 
! contour plot 

! The CNTSection command is not given. 
! Default is to plot 5 sections 
! containing the top peaks. 

C. Locked se l f  rotation function calculation.  

title Locked self RF calculation 
print irf,prt 

! Standard orientation 
! 

polar xyk 
locsymmetry 0 0 1 5 vector ! 532 icosahedral symmetry 
locsymmetry -90 58.28253 180 2 polar 

! locsymmetry 1 0 0 2 vector 
! locsymmetry 1 1 1 3 vector 
locexpand true 

! Conventions 

polar xzk 
euler zxz 
orthogonaliz~tion axabz 

! Crystal A 

acell 306 361.1 299.7 90 92.91 90 
asymmetry p21 
aobs-file native.dat 
aformat (3i4, 2f8.2) 
acutoff 2 1 0 
apower 2 
nshell 8 
origin true 
! 

! Crystal B 
! 

cutoff 5.0 

! point group 23 

! Patterson origin removal 

! Large term cutoff 
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! Search parameters 

self true 
cross false 
fast false 
resolution 30 15 
radius 150 
rcutoff i0 
boxsize 3 3 3 
gevaluation 2 
sangle euler 
slimits 1 0 90 6 
slimits 2 0 64 6 
slimits 3 0 72 6 
peak-search 4 50 
oangle euler zyz 
section 213 
mapfile irf.map 
! 

stop 

! Calculate by slow rotation function 
! Fast RF is possible as well 

the angle limits 

sectioning of the map file 
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[35]  P h a s e d  T r a n s l a t i o n  F u n c t i o n  

By GRAHAM A. BENTLEY 

Introduction 

Translation functions used in molecular replacement to position a cor- 
rectly oriented model in the unit cell of an unknown crystal structure can 
be classified into three distinct types. The first category 1,2 relies on compar- 
ing the Patterson function of the structure under study with that calculated 
from an oriented model placed at some specified position in the unit cell 
of the unknown molecule. When the position of the model is coincident 
with the unknown molecule, the interatomic vectors between symmetry- 
related components in one Patterson will largely coincide with those of the 
other Patterson and, in the ideal case, the correlation between the two 

1 R. A. Crowther and D. M. Blow, Acta Cryst. 23, 544 (1967). 
2 y .  Harada, A. Lifchitz, J. Berthou, and P. Joll6s, Acta Cryst. A37, 398 (1981). 
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