Evaluating Derivative Quality
Performing the Chi Squared Test with Isomorphous data
Live sex
X-ray diffraction displayed with Denzo,
courtesy of C. Kerfeld. 
Isomorphous Differences: A sample script for the isomorphous Chi Squared test is given below. You need a complete native data set in scalepack format (.sca file) and only 5 degrees of integrated data (.x files) from a derivative data set.  Since you can perform this test after only 5 frames, it can be used to quickly decide whether to collect a full data set or move on to the next putative derivative crystal.  If the chi squared statistics for your crystal are small (under 3 in all resolution ranges) then you can be guaranteed that this crystal is not useful for phasing. It is essentially, a native crystal. If the chi squared statistics for your crystal are large then there is hope that you have a useful derivative. But remember, a positive result on the isomorphous chi squared test is not always reliable since non specific heavy atom binding often causes non-isomorphism between native and derivative crystals ...which in turn leads to large chi squared values. Alas, false positives are common. If you have a positive isomorphous chi squared test, then you should continue collecting data until over 90% complete. Then calculate an isomorphous difference Patterson map to check for peaks on the Harker sections. Harker peaks greater than 5 sigma are an indisputable indication of a useful derivative!  Example log files from 1) a good derivative 2) non-isomorphous derivative and 3) non-derivative are given below.

Manual for Denzo:
References: Z. Otwinowski & W. Minor, HKL manual, (1996) pages 96 and 110.


A Command File for Performing the Chi Squared Test on ISOMORPHOUS DATA using Scalepack
COMMENTS

scalepack << eof-scale > scalepotder.log

space group P61
number of zones 8
estimated error 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[Estimated error for each resolution shell  ]

format scalepack

hkl matrix   1  0  0
                      0  1  0
                      0  0  1

file 1 'native.sca'
reference batch 1

[**********Potential Derivative***********]
resolution 2.2

estimated error .05 .05 .05 .05 .05 .05 .05 .05
[Estimated error for each resolution shell  ]

error scale factor 1.6

rejection probability 0.0001

ignore overloads

add partials 1 to 6

format denzo_ip

sector 1 to 6

hkl matrix   1 0 0
                      0 1 0
                      0 0 1

file 2 'deriv_1_###.x'

output file 'junk.sca'

eof-scale
rm junk.sca
 

We are licensed to use Scalepack on Sayre or Bayes.
 
 
 

First we specify space group and location of native data set.

Check the native scalepack log file --the chi squared values given in the last table of the log file should be close to 1.0 in all resolution shells. If not, run another cycle of scalepack on the native data set, adjusting the estimated error estimates until chi squared is between 0.9 and 1.1. The error estimates used in the native data set will effect the chi squared test when comparing with the derivative.
 
 
 
 
 
 
 
 

Here we specify information about the derivative crystal.
 
 

add partials. We are using frames 1-6 in this example.
 
 
 
 
 
 
 
 
 
 
 

 

Log file from a Useful Isomorphous Derivative 
Here is an example log file for a true Hg derivative of a 30kD protein (T7 helicase domain in space group P61). Notice that the Rfactor for useful data is between 10% and 30%. Any less than 10% and the derivative is probably really a native. Also Chi squared should be somewhere between 2 to 50. The isomorphous difference Patterson map showed 8 sigma peaks on the harker sections. 

               Summary of reflections intensities and R-factors by shells
     R linear = SUM ( ABS(I - <I>)) / SUM (I)
     R square = SUM ( (I - <I>) ** 2) / SUM (I ** 2)
     Chi**2   = SUM ( (I - <I>) ** 2) / (Error ** 2 * N / (N-1) ) )
     In all sums single measurements are excluded

 Shell Lower Upper Average      Average    Norm.  Linear Square
 limit    Angstrom       I   error   stat. Chi**2  R-fac  R-fac
     99.00   4.40 52199.1  1268.2  1237.4 83.447  0.184  0.261
       4.40   3.49 23639.4   598.0     581.4 37.651  0.156  0.214
       3.49   3.05   6527.2   157.7     155.6 20.861  0.183  0.241
       3.05   2.77   2174.2     70.8       70.7   7.794  0.216  0.298
       2.77   2.57     955.0     55.7       55.7   3.283  0.316  0.463
       2.57   2.42     487.8     57.4       57.4   1.754  0.374  0.516
       2.42   2.30     289.1     67.7       67.7   0.000  0.000  0.000
  All reflections  12152.6  320.9   313.9 26.980  0.180  0.252

Log file from a Non-Isomorphous Derivative 
Here is an example log file from a non-isomorphous derivative (Courtesy of C. Goulding). Heavy atoms bind non-specifically and cause changes in crystal packing. The result is large differences in the chi squared test which closely mimic the results from the chi squared test from an true isomorphous derivative (see above). When you get a result like this, you need to continue collecting data until the data set is better than 90% complete. Then calculate an isomorphous difference Patterson map. In this example, the Patterson map was flat on all the harker sections. 
 
  Lower Upper Average     Average.  Norm.    Linear Square
                               I        error    stat.   Chi**2  R-fac  R-fac
     99.00   7.00  1784.6    47.8    37.0 170.026  0.196  0.356
       7.00   5.56  1391.3    34.3    30.2   19.617  0.172  0.230
       5.56   4.85  2089.4    42.8    37.4   50.743  0.201  0.423
       4.85   4.41  1975.4    35.7    32.0   84.048  0.253  0.451
       4.41   4.09  1841.8    41.3    37.6   42.016  0.256  0.427
       4.09   3.85  1434.4    36.8    36.3   37.648  0.268  0.580
       3.85   3.66  1439.1    45.7    45.1   52.823  0.338  0.536
       3.66   3.50  1361.5    53.7    53.4   53.058  0.447  0.745
All reflections  1671.8    42.4    38.5   69.212  0.232  0.422
 
Log file from a Non-Derivative
Here is an example log file for a non-derivative.  The chi squared test indicates no significant differences between the native and derivative. In fact, it looks like the logfile you would expect from scalepacking a single native crystal. When you get test results like this, remove the crystal from data collection and try a different soak condition. 

   Lower Upper Average    Average    Norm.  Linear Square
   limit                    I        error   stat.  Chi**2  R-fac  R-fac
     20.00   5.14  1598.3    46.4    15.6  3.661  0.129  0.193
       5.14   4.09  1980.7    41.0    24.2  6.282  0.130  0.403
       4.09   3.58  1562.1    43.3    28.7  4.851  0.132  0.196
       3.58   3.25  1232.4    54.6    39.9  3.221  0.142  0.166
       3.25   3.02    936.2    58.9    47.5  2.212  0.159  0.175
       3.02   2.84    742.7    56.5    52.6  1.647  0.180  0.245
       2.84   2.70    493.4    56.1    54.3  1.376  0.216  0.261
       2.70   2.58    441.2    62.3    60.8  1.313  0.257  0.271
       2.58   2.49    353.5    63.3    62.4  1.243  0.306  0.348
       2.49   2.40    341.2    83.8    82.6  1.292  0.344  0.350
  All reflection 1101.7    54.3    42.3   3.670 0.144  0.281
 
 
 


 


[Overview] ·[Facilities] · [People] · [Services] ·[Lectures] · [BioLinks] · [Stats] ·[Search]