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A new procedure for molecular replacement is presented in

which an ef®cient six-dimensional search is carried out using

an evolutionary optimization algorithm. In this procedure, a

population of initially random molecular-replacement solu-

tions is iteratively optimized with respect to the correlation

coef®cient between observed and calculated structure factors.

The sensitivity and reliability of the method is enhanced by

uniform sampling of the rotational-search space and the use of

continuously variable rotational and translational parameters.

The process is several orders of magnitude faster than a

systematic six-dimensional search, and comparisons show that

it can identify solutions using signi®cantly less accurate or less

complete search models than is possible with two existing

molecular-replacement methods. A program incorporating the

method, EPMR, allows the rapid and highly automated

solution of molecular-replacement problems involving single

or multiple molecules in the asymmetric unit. EPMR has been

used to solve a number of dif®cult molecular-replacement

problems.
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1. Introduction

Crystallographic structure determination by molecular repla-

cement (MR) makes use of an approximate structural model

to provide initial phase estimates. If the model is suf®ciently

accurate and can be placed correctly in the unit cell, the ®nal

structure can be obtained through rebuilding and re®nement.

MR is now widely used as a method for macromolecular

structure determination, and opportunities for its use will

continue to increase as the number of known protein struc-

tures grows and homology-modeling methods improve.

MR requires the identi®cation of the correct orientation

and position of the structural model in the asymmetric unit.

The success of this procedure depends critically on the quality

of the model used. Although MR has been accomplished using

models comprising of a very small fraction of the total scat-

tering matter in the asymmetric unit (Oh, 1995; Bernstein &

Hol, 1997), experience has shown that the coordinate differ-

ences from the target molecule must be small for the proce-

dure to be successful. Even when an accurate structural model

is available, a solution is not always obtained. As a result,

there is considerable interest in methods that can increase the

reliability and extend the range of applicability of MR.

The identi®cation of the three rotational and three trans-

lational parameters that de®ne the orientation and position of

the molecule in the asymmetric unit has been traditionally

accomplished using the Patterson superposition methods

pioneered by Rossmann & Blow (1962). These methods are

based on ®nding the maximum correlation between observed

Patterson vectors and those calculated for the search model in



an arti®cial cell. To reduce the computational cost over that of

a comprehensive six-dimensional search, the procedure is

divided into an initial search for the correct rotation of the

search model, followed by a search for the correct translation.

The rotation search can be formulated in real space (Huber,

1965) or reciprocal space (Rossmann & Blow, 1962), but is

conceptually performed by examining only Patterson vectors

up to a certain length so that primarily intramolecular vectors

(self-vectors) are considered. The translation search (Crow-

ther & Blow, 1967) then involves ®nding the maximum

correlation between the remaining intermolecular Patterson

vectors (cross-vectors).

Division of the MR problem into separate rotation and

translation searches reduces the computational cost dramati-

cally over a comprehensive six-dimensional search. However,

this approach has disadvantages. At the optimum in the

rotation search, only a subset of all Patterson vectors is

superimposed, and thus the signal-to-noise ratio in this step is

inherently low. In some cases, the highest correlation found in

the rotation search does not correspond to the correct solu-

tion, and alternative rotation solutions must also be examined.

Furthermore, the translation search can be highly sensitive to

any error in the orientation obtained from the rotation search.

Numerous techniques have been introduced to circumvent

these problems. For example, the program AMoRe (Navaza,

1994) allows the automated examination of multiple rotation-

function peaks in the translation search. The program BRUTE

(Fujinaga & Read, 1987) allows re®nement of the orientation

during the translation search. BruÈ nger (1990) has introduced

the technique of `Patterson correlation' re®nement to opti-

mize the search-model orientation prior to the translation

search. An alternative form of rotation search, termed the

`direct' rotation function, has been described by DeLano &

BruÈ nger (1995), in which the search model itself is rotated

rather than the corresponding Patterson map, and the corre-

lation coef®cient between observed and calculated structure

factors is determined at each trial orientation. This method has

the advantage that all data, and thus all self-vectors, are

considered.

Many of the limitations inherent in separate rotation and

translation searches are avoided by a comprehensive six-

dimensional search, which should ultimately be a more

sensitive and reliable method of obtaining MR solutions.

Limited forms of six-dimensional search have been used to

solve several dif®cult MR problems (Rabinovich & Shakked,

1984; Tong, 1996). However, despite continuing increases in

computer speeds, systematic six-dimensional searches have

not generally been feasible because of the very large number

of trial positions that must be evaluated. Contemporary non-

linear optimization techniques provide a potential solution to

this problem. Chang & Lewis (1997) have recently demon-

strated the use of genetic algorithms for multidimensional MR

searches. In an independently developed procedure, we have

employed a similar stochastic search technique, evolutionary

programming (Fogel et al., 1966), to simultaneously optimize

the orientation and position of a search model with respect to

the correlation coef®cient between the observed and calcu-

lated structure factors. We show that this method is capable of

identifying MR solutions using less accurate or less complete

search models than is possible with two existing MR methods.

The method has been incorporated into a computer program,

EPMR (evolutionary programming for molecular replace-

ment), that allows rapid automated identi®cation of MR

solutions.

2. Molecular replacement by evolutionary search

Evolutionary programming has been shown to be an ef®cient

algorithm for determining the global optimum of a variety of

complex non-linear search spaces (Fogel, 1995; Gehlhaar et al.,

1995; Bowie & Eisenberg, 1994). By analogy with evolutionary

processes in biology, this stochastic search algorithm acts

through the iterative optimization of a population of trial

solutions. The population `evolves' through competition

among its members for survival, followed by production of

`offspring' by the surviving members of the population. The

relative `®tness' of each population member is calculated using

a mathematical objective function. Competition can be

performed through simple rank ordering of the members of

the population by their objective function score and then

discarding some fraction of the lower scoring individuals.

More commonly, a stochastic tournament is employed,

whereby the ®tness of each member of the population is

compared to that of a small number of other randomly chosen

individuals, and the population is ranked according to the

number of competitions that each member wins. This non-

deterministic ranking serves to maintain a greater degree of

diversity in the surviving solutions. Surviving members of the

population produce offspring so as to restore the population

to its original size. Offspring are produced by introducing

small random variations in the values of the parameters

comprising a parent solution. Through this process, evolu-

tionary algorithms can provide broad comprehensive

stochastic sampling that gradually focuses on the most

promising regions of the search space.

Evolutionary programming algorithms share several char-

acteristics with genetic algorithms (Fogel, 1995), which have

also recently been applied to six-dimensional MR searches

(Chang & Lewis, 1997). However, the two search methods

differ in several critical respects. Most importantly, in evolu-

tionary programming the parameters are represented as a

real-valued vector, instead of the bit-string used in a standard

genetic algorithm. The parameters are thus allowed to vary

continuously, eliminating the need to choose a sampling

interval for problems involving real-valued parameters. In

addition, evolutionary programming is based on simultaneous

modi®cation of all parameters during generation of offspring.

Traditional genetic algorithms rely primarily on crossover, in

which parts of two parents are combined, which tends to leave

the values of some parameters unchanged. Thus, evolutionary

programming is likely to be more effective in searching spaces

where the variable parameters are correlated (Salomon,

1996).
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The evolutionary programming search procedure for MR is

summarized in Fig. 1. A starting population of trial MR

solutions is generated by assigning random values to the six

rigid-body parameters describing the orientation and position

of the search model in the unit cell. A stochastic tournament is

used to determine which solutions survive into the next

generation. Surviving members of the population are retained

in the next generation without modi®cation and are used to

produce offspring to regenerate the population. Offspring are

generated by applying normally distributed random mutations

to the orientation and translation of the parent solution. The

process is repeated for a ®xed number of generations, after

which the solution with the highest correlation coef®cient is

chosen for a conjugate-gradient optimization procedure

(Powell, 1977).

The standard deviations for the mutation sizes are set at the

start of the process, but are allowed to vary in a self-adaptive

manner, with selection pressure determining the optimal

mutation sizes as the search progresses. In this procedure

(Schwefel, 1981; Fogel, 1995), the standard deviation of the

Gaussian mutation �0i for each variable i is generated from the

value �i used to generate the parent solution by the following

equation,

�0i � �i exp��N�0; 1� � �Ni�0; 1��; �1�
where � = 1/(21/2n), � = 1/(2n)1/2, N(0, 1) is a Gaussian random

number with zero mean and unit variance, Ni(0, 1) is a

different random number for each variable and n is the

number of variables. Thus, � affects the size of all variables for

a particular offspring, while � affects the individual variables.

Proper sampling of the search space is essential for an

evolutionary algorithm to be generally effective. Although it is

convenient to express rotations for MR searches in terms of

Eulerian angles (Rossmann & Blow, 1962), the use of Eulerian

angles (or spherical polar angles) results in non-uniform

sampling of the angular space. Values near the poles [�2 = 0� or

180�, according to the convention of Rossmann & Blow

(1962)] are much more ®nely sampled than at the equator

(�2 = 90�). Uniform sampling in Euler space thus leads to a

highly biased search. To circumvent this problem, we

employed a quaternion representation (Minkler & Minkler,

1990) for the search-model rotation. The quaternions for the

initial population were calculated so as to evenly sample

rotation space, and were mutated in subsequent generations

through application of Gaussian random rotations about a

random axis. As a result, the searches are unbiased and

equally ef®cient regardless of the location of the solution in

rotation space.

The choice of the objective function used to evaluate the

®tness of each member of the population is also critical to the

success of an evolutionary programming algorithm. We

examined several functions, including the conventional crys-

tallographic R factor and several forms of correlation coef®-

cient between observed and calculated structure factors in

either standard or normalized form. The objective function

that proved most effective was the linear correlation coef®-

cient between observed and calculated (non-normalized)

structure factors,

C �
P�jFoj ÿ jFoj��jFcj ÿ jFcj�

�P�jFoj ÿ jFoj�2�1=2�P�jFcj ÿ jFcj�2�1=2
: �2�

Determining this correlation coef®cient requires the calcula-

tion of a complete set of structure factors for each new

member of the population in each generation. In a typical

search procedure, structure factors are calculated approxi-

mately 10000 times. The speed of the procedure thus depends

critically on the ef®ciency of the structure-factor calculations.

The computation times would be prohibitively long if struc-

ture factors were calculated by fast Fourier transform (FFT).

However, a more rapid method of structure-factor calculation

can be applied to a molecule undergoing rigid-body transfor-

mation. If the Fourier transform of the molecular electron

density is sampled on a suf®ciently ®ne grid, structure factors

for that molecule in any orientation and position in the unit

cell can be calculated by appropriate transformation of

re¯ection indices, interpolation and application of appropriate
Figure 1
Flowchart of molecular replacement by evolutionary search.



phase shifts (Lattman & Love, 1970; Huber & Schneider,

1985). Using this method, structure factors are calculated once

by FFT for the search model at the origin of an arti®cial P1

cell. The dimensions of the cell are chosen to allow suf®ciently

®ne sampling of the transform so that interpolation errors are

minimized in subsequent calculations. A cell of approximately

four times the extent of the search model in each direction

yields an average error of less than 1% in the structure-factor

magnitudes. Subsequent structure-factor calculations are

performed as follows.

(i) The indices of each observed re¯ection are transformed

into the lattice of the molecular transform and rotated

according to the current rotation of the search model.

(ii) The structure factor at the non-integral indices is

calculated using linear interpolation into the table of P1

structure factors.

(iii) Phase shifts corresponding to the current translation of

the search model in the unit cell are applied.

(iv) The contributions from all symmetry-related molecules

are summed. This procedure provides a dramatic speed

increase over FFT calculation and allows the evolutionary

search procedure to be quite rapid.

To optimize the performance of the evolutionary

programming algorithm, we systematically varied the popu-

lation size, the number of generations, the number of

competitors in the stochastic tournament, the starting muta-

tion sizes and other parameters, while evaluating the proce-

dure on a variety of test cases. Because the search procedure is

non-deterministic, the correct solution will not be found on

every run, even if the population size is made very large. We

found that a population size of 300 evolving over 50 genera-

tions provided a good compromise between computation time

and search ef®ciency. Starting mutation sizes were set to 6� for

rotations and 3 AÊ for translations. Six competitors were used

in the stochastic tournament, with the top 50% of solutions

kept as survivors at the start of the search, decreasing linearly

to 20% at the end of the search. No crossover between

surviving solutions was used.

3. Examples of use

The procedures described above have been incorporated into

the program EPMR, which was designed to provide MR

solutions in a highly automated manner. The only input ®les

required by the program are those containing the search-

model coordinates, the observed structure-factor amplitudes

and the cell parameters. A set of command-line options allows

the user to control the program's operation. In its default

mode, EPMR will search for a single molecule in the asym-

metric unit, running the evolutionary search procedure up to

ten times or until a correlation coef®cient of 0.5 or higher is

obtained. By default, data in the resolution range 15±4 AÊ are

used in the search, and the coordinates of the solution having

the highest correlation coef®cient at the end of the speci®ed

number of runs are written to a ®le.

Searches for multiple molecules or domains in the asym-

metric unit are conducted sequentially. After a solution is

found, its static contribution to the structure factors is

included in the correlation-coef®cient calculations on subse-

quent searches. These sequential searches require smaller

population sizes and thus shorter run times than would be

necessary for higher dimensional simultaneous searches.

The following example structure determinations illustrate

the application of EPMR.

3.1. Type 2 rhinovirus protease

A complex of the protease from type 2 rhinovirus with a

bound inhibitor was crystallized in space group P21212,

a = 62.28, b = 77.63, c = 34.10 AÊ with one complex in the

asymmetric unit (Ferre & Matthews, 1998). The structure was

determined using as a search model the protease from type 14

rhinovirus (Matthews et al., 1994), which shares 48% sequence

identity with type 2 rhinovirus protease. The evolutionary

search procedure was applied using all data in the resolution

range 15±4 AÊ (1552 re¯ections), and was carried out over 50

generations using a population size of 300. A solution with a

correlation coef®cient of 0.42 (R factor = 0.53) was found on

the ®rst run of the search procedure, and was later veri®ed by

re®nement and identi®cation of the bound ligand in difference

electron-density maps. The progress of the search is illustrated

in Fig. 2.

The total run time was 255 CPU s on a Silicon Graphics

Octane workstation with a 175 MHz MIPS R10000 processor.

The procedure required approximately 10000 structure-factor
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Figure 2
Evolution of MR solutions for (a) a rhinovirus protease±inhibitor
complex, (b) an FKBP12.6±inhibitor complex, showing solutions for the
®rst (open circles) and second (®lled circles) molecule in the asymmetric
unit. The correlation coef®cient of the top solution in each generation is
shown. Generation 51 represents the ®nal conjugate-gradient minimiza-
tion step.
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calculations. (Structure factors for surviving solutions do not

need to be recalculated.) By comparison, a systematic six-

dimensional search using an angular increment of 5� and

translational steps of 2 AÊ would require over 140 million

structure-factor calculations. The evolutionary search was thus

over 14000 times more ef®cient than a systematic search in

this case. In fact, the evolutionary algorithm is also several

times more computationally ef®cient than a traditional rota-

tion and translation search, which would have required

approximately 49000 calculations. The total CPU time for all

equivalent steps using AMoRe, which has highly ef®cient

implementations of the rotation and translation functions, on

the same problem was approximately 58 s. The total CPU time

using the direct-rotation function, Patterson correlation

re®nement, translation function and rigid-body re®nement in

X-PLOR (BruÈ nger, 1992) was 55 min. Thus, EPMR can carry

out a six-dimensional MR search on a time-scale comparable

to that currently required for separate rotation and translation

searches.

With traditional MR methods, an indication that a correct

answer has been found is given by the peak height relative to

the overall background. This is not possible using EPMR

because a complete search is not performed. A good indica-

tion that the correct solution is found using EPMR is that the

solution is obtained repeatedly in multiple runs. In this

example, the correct solution was obtained in 64 out of 100

runs of the search procedure. The highest correlation coef®-

cient for an incorrect solution was 0.312.

3.2. FK506-binding protein 12.6

A complex of FK506-binding protein (FKBP) 12.6 with a

bound inhibitor was crystallized in space group P1, a = 32.80,

b = 35.27, c = 47.68 AÊ , � = 85.73, � = 72.16,  = 66.32� with two

molecules in the asymmetric unit. A search model was

constructed using the FKBP12 protein from the FKBP12±

rapamycin complex (Protein Data Bank entry 1FKB; Van

Duyne et al., 1991). 18 residues (out of 107) that were non-

identical in the two proteins were truncated to alanine. A

sequential search was performed for the two molecules in the

asymmetric unit using EPMR. 1480 re¯ections in the resolu-

tion range 15±4 AÊ were used. Each evolutionary search was

carried out over 50 generations using a population size of 300.

On the ®rst run, a solution was found for one of the molecules

in the asymmetric unit with a correlation coef®cient of 0.292

(R factor = 0.502). The partial structure contribution of the

®rst solution was calculated and added to the structure-factor

calculations during the search for the second molecule. A

second solution was found with a correlation coef®cient for

the combined solutions of 0.526 (R factor = 0.398). The total

run time for the two searches was 138 CPU s on the work-

station described in x3.1. The procedure required approxi-

mately 20000 structure-factor calculations. By comparison, a

rotation search to ®nd the ®rst molecule and systematic six-

dimensional search for the second molecule using increments

of 5� and 2 AÊ would require over one billion structure-factor

calculations. Separate rotation and translation searches would

require roughly 190000 structure-factor calculations. In this

case, the evolutionary search was over 50000 times more

ef®cient than a systematic six-dimensional search and roughly

nine times more ef®cient than a rotation/translation search.

3.3. Cytochrome c0

The crystal structure of cytochrome c0 from Alcaligenes

denitri®cans was originally determined using a combination of

MR and phase information from the anomalous scattering of

the heme iron (Baker et al., 1995). The protein crystallized in

space group P6522, a = b = 54.6, c = 180.4 AÊ , with one molecule

in the asymmetric unit. According to the authors, initial

attempts at ®nding a MR solution using ALMN (Collaborative

Computational Project, Number 4, 1994) and X-PLOR with

Patterson correlation re®nement (BruÈ nger, 1990) were

unsuccessful. The structure was eventually determined after a

large number of alternative solutions from AMoRe (Navaza,

1994) using several different search models were analyzed for

consistency with the iron position obtained from an anom-

alous difference Patterson map and correlation with electron-

density maps phased by anomalous scattering (Baker et al.,

1995).

The structure was redetermined with EPMR using the

observed structure factors deposited with the structure (entry

1CGN) in the Protein Data Bank (PDB; Bernstein et al., 1977)

and the deposited coordinates for one of the search models

used in the original structure determination, residues 3±125 of

the cytochrome c0 from Rhodospirillum molischianum (PDB

entry 2CCY). The evolutionary search procedure was applied

using a search model consisting of the polyalanine backbone

and heme group of the R. molischianum protein, a model that

was not suf®cient to yield the correct solution in the original

structure determination. All data in the resolution range 15±

4 AÊ (1527 re¯ections) were used. The correct solution, with a

correlation coef®cient of 0.515 (R factor = 0.598) was found on

the ®fteenth run of the search procedure. The highest corre-

lation coef®cient obtained for an incorrect solution was 0.452

after 100 runs of the search procedure, indicating that the

correct solution could clearly be identi®ed above the back-

ground. The highest correlation obtained when the procedure

was carried out in space group P6122 was 0.461, indicating that

the correct space group could also be clearly identi®ed. Thus,

EPMR was able to unambiguously identify the correct solu-

tion in this case without additional phase information from

other techniques, while using a non-optimal polyalanine

search model.

4. Comparison with existing MR methods

To determine if our method offers consistent advantages in

signal-to-noise over existing MR methods, we compared the

performance of EPMR with two widely used programs,

X-PLOR (BruÈ nger, 1992) and AMoRe (Navaza, 1994). We

chose four test cases that had both coordinates and structure

factors deposited in the PDB. The test cases, summarized in



Table 1, represent a range of space groups of moderate to very

high symmetry.

We ®rst evaluated the ability of each program to identify the

correct MR solution as increasing amounts of coordinate error

were introduced into the search model. The re®ned protein

coordinates deposited in the PDB were taken as the ideal

search-model coordinates. Both polyalanine and all-atom

search models were constructed, and random normally

distributed errors with a de®ned root-mean-square deviation

(RMSD) were introduced into the coordinates of each search

model. The RMSD was increased in 0.1 AÊ increments.

Although this type of coordinate error is not representative of

that occurring in real-world search models, it does yield

models with systematically decreasing correlation between

observed and calculated structure factors. The randomized

coordinates were submitted to each of the three programs

using the experimental conditions described in Fig. 3. An MR

search was considered successful if the solution providing the

highest correlation coef®cient in the ®nal step in each proce-

dure was within 5.0� and 2.0 AÊ of the deposited coordinates.

(The exact choice of cutoffs did not signi®cantly affect the

results.)

Fig. 3 compares the maximum amount of coordinate error

that could be introduced into the search model when using

each of the three programs. The maximum coordinate error

varied widely between the different test cases. In four of the

eight test conditions, a larger amount of coordinate error

could be introduced when using EPMR than either of the

other two methods. In the remaining four test cases, an equal

amount of coordinate error could be introduced when using

EPMR or AMoRe, with somewhat less error allowed using

X-PLOR.

With all three programs, more error could be introduced

when using the polyalanine models than with the all-atom

models. We attribute this to the fact that the positions of the

randomly displaced atoms in the polyalanine models would

sometimes approximate the positions of side-chain atoms not

present in the search models.

We next evaluated the ability of the three MR methods to

identify the correct solution with increasingly truncated search

models. For these tests we chose a test case, 6RHN, which had

coordinates available for the search model used in the original

structure determination. This protein, histidine-triad nuclear

binding protein, was originally determined using the coordi-

nates of the protein with bound adenosine (PDB entry 4RHN;

Brenner et al., 1997). The RMSD between the 4RHN coor-

dinates and the ®nal 6RHN coordinates was 0.71 AÊ for all

protein atoms and 0.30 AÊ for polyalanine atoms. We

progressively truncated the protein or polyalanine coordinates

of 4RHN by removal of C-terminal residues. The models were

truncated in increments of approximately 5% of the total

number of residues in the protein, corresponding to ®ve or six
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Figure 3
Maximum coordinate error for three MR methods. The tests were carried
out with X-PLOR version 3.1 (BruÈ nger, 1992) using the direct-rotation
function, Patterson correlation (PC) re®nement and translation functions
and AMoRe from version 3.2 of the CCP4 package (Collaborative
Computational Project, Number 4, 1994). In X-PLOR, the top 500 peaks
from each rotation search were each subjected to ten cycles of PC
re®nement. The solution having the highest correlation coef®cient after
PC re®nement was submitted to the translation function. For the AMoRe
rotation function, the integration radius was set to the largest value
allowed by the program that was also less than or equal to the maximal
extent of the search model from its center of mass. The top 99 rotation-
function peaks were submitted to the translation search. The angular
increments for the rotation searches were 2.5� in AMoRe and 2� in
X-PLOR. EPMR was allowed a maximum of 100 runs to identify the
correct solution, using a population size of 300 and 50 generations. Data
in the resolution range 15±4 AÊ were used in all cases. The temperature
factors of the deposited coordinates were retained. Each search model
was rotated away from the correct orientation by an arbitrary amount
before use.

Table 1
Test cases.

PDB entry code Protein name Crystal parameters Reference

1UBQ Ubiquitin P212121; a = 50.84, b = 42.77,
c = 28.95 AÊ

Vijay-Kumar et al. (1987)

6RHN Histidine-triad nuclear binding protein P43212; a = b = 40.34,
c = 143.03 AÊ

Brenner et al. (1997)

1CBY CytB delta-endotoxin P6122; a = b = 66.81,
c = 170.79 AÊ

Li et al. (1996)

1VIP Phospholipase A2 I4132; a = b = c = 122.78 AÊ Carredano, E. Westerlund, B., Persson, B., Saarinen, M.,
Ramaswami, S., Eaker, D. & Eklund, H. Unpublished work.
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of the 104 residues. The truncated coordinates were submitted

to each of the three MR procedures using the same test

conditions described in Fig. 3. The results are shown in Fig. 4.

For both the all-atom and polyalanine models, the largest

degree of truncation was possible when using EPMR. The all-

atom model could be truncated by approximately 60% using

EPMR, compared with 55% using AMoRe and 40% using

X-PLOR. The polyalanine model could be truncated by

approximately 55% using EPMR, 40% using X-PLOR and

35% using AMoRe.

5. Conclusions

The use of an evolutionary algorithm allows six-dimensional

MR searches to be carried out rapidly and offers several

advantages over traditional MR methods. Most importantly,

the signal-to-noise limitations of sequential rotation and

translation searches are avoided. We believe that increased

signal-to-noise is the primary explanation for the superior

ability of EPMR to identify solutions with highly truncated or

inaccurate search models. The signal-to-noise ratio in our

method is further improved owing to the fact that the rota-

tional and translational parameters for the search model are

continuously variable rather than sampled at ®xed intervals as

is the case in both traditional rotation/translation searches and

in the genetic algorithm approach of Chang & Lewis (1997).

Although optima are unlikely to be missed entirely if sampling

intervals are carefully chosen, the signal-to-noise is invariably

compromised unless a solution occurs exactly at a sampled

position. Uniform sampling of rotation space in our method

further ensures that the search procedure is equally ef®cient

regardless of the orientation of the solution.

MR searches using EPMR are rapid and highly automated.

The program requires very simple inputs and can produce

solution coordinates for problems involving single or multiple

molecules in the asymmetric unit in a single step, often within

minutes, without user intervention. Our results show that, in

some cases, EPMR can ®nd solutions using signi®cantly less

accurate or less complete search models than is possible with

two conventional methods that employ separate rotation and

translation searches. These results re¯ect only a single speci®c

set of test conditions. Judicious selection of resolution ranges,

rotation-function integration radius in AMoRe, or other

parameters could yield improved results with the other two

programs. We do not expect that EPMR will give superior

results on all MR problems. Nevertheless, the program has

now been used in a number of laboratories to solve novel

crystal structures, including several for which other MR

methods had failed (Behnke et al., 1999; Segelke et al.,

1999; Stan®eld, 1998; C. R. Kissinger, unpublished

results).

EPMR could potentially be enhanced in a number of ways.

For instance, although we have found that searching sequen-

tially for multiple molecules or domains in the asymmetric unit

is an effective approach, simultaneous searches could be a

useful alternative. The increased number of search parameters

will require larger population sizes in the search, which will

increase the computation time, but there could be offsetting

advantages in search ef®ciency. We are investigating the

relative ef®cacy of this approach. Such multi-body searches

could be particularly effective when combined with the use of

non-crystallographic symmetry restraints.

A shortcoming of our method is that the search ef®ciency

drops as the quality of the search model decreases. When a

search model is highly inaccurate or incomplete, it can take a

large number of attempts before the correct solution is

obtained. However, it should be pointed out that this often

may be a search model for which existing methods are not able

to identify the solution at all. We are exploring the use of other

scoring functions in order to maximize the search ef®ciency

when the model is marginal. It might be more useful in these

cases to optimize the internal geometry of the model during

the search process. We have recently incorporated the ability

to optimize individual segments of a search model into the

conjugate-gradient optimization procedure that follows the

evolutionary search. This can be particularly valuable in

increasing the effectiveness of automated sequential searches

for multiple molecules in the asymmetric unit in those cases

where the search model requires signi®cant internal adjust-

ment. We are now experimenting with methods of incorpor-

ating internal optimization of the search model into the

evolutionary search itself.

Ultimately, it should be possible to incorporate not only

optimization, but also selection of the search model into the

procedure. Instead of a single search model, a set of structural

models would be allowed to compete in the evolutionary

search process. Although this will undoubtedly necessitate

much larger population sizes and much longer computing

times, early experiments suggest that this approach is feasible.

When combined with a comprehensive database of protein

structures, such a procedure could greatly expand the range of

applicability of MR.

Figure 4
Maximum search-model truncation for three MR methods. The
diffraction data were obtained from PDB entry 6RHN. The search
models were derived from the protein coordinates of entry 4RHN (a total
of 104 residues). The test conditions were as described in Fig. 3.



EPMR is available from the authors upon request.
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